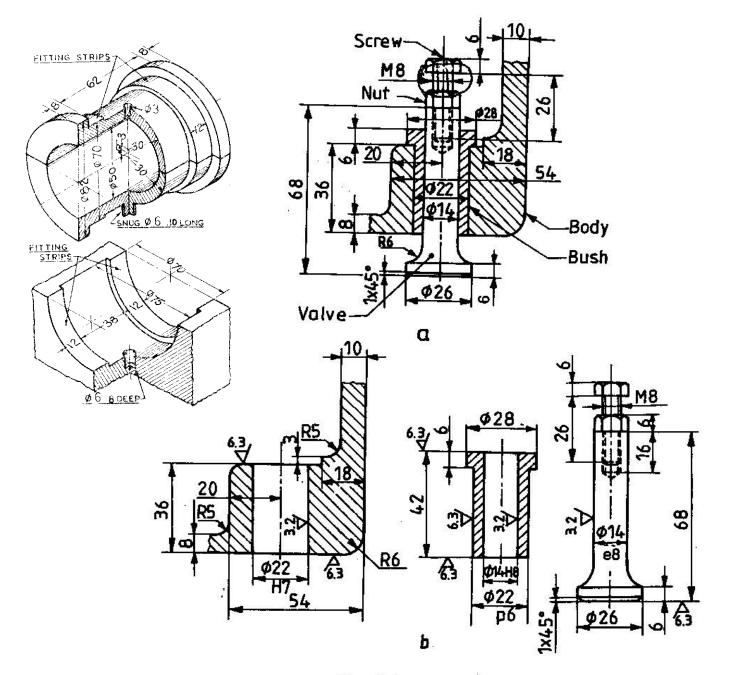
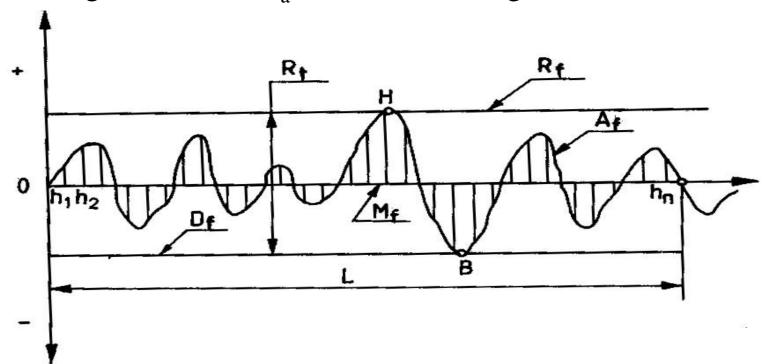

Surface Finish

- An engineering component may be cast, forged, drawn, welded or stamped, etc.
- All the surfaces may not have functional requirements and need not be equally finished
- Some surfaces (owing to their functional requirements) need additional machining that needs to be recorded on the drawing




Fig. 8.1 Tappet in guide

Surface Roughness

The geometrical characteristics of a surface include,

- 1. Macro-deviations,
- 2. Surface waviness, and
- 3. Micro-irregularities.

The surface roughness is evaluated by the height, R_t and mean roughness index R_a of the micro-irregularities.

Surface roughness number

Represents the average departure of the surface from perfection over a prescribed sampling length, (usually selected as 0.8 mm)

Surface roughness number (R_a) is expressed in microns.

$$R_a = (h_1 + h_2 + ---- + h_n)/n$$

The measurements are usually made along a line, running at right angle to the general direction of tool marks on the surface.

Actual profile, A_f

-It is the profile of the actual surface obtained by finishing operation.

• Reference profile, R_f

—It is the profile to which the irregularities of the surface is referred to. it passes through the highest point of the actual profile.

• Datum profile, D_f

-It is the profile, parallel to the reference profile .it passes through the lowest point B of the actual profile

• Mean Profile, M_f

It is that profile, within the sampling length chosen (L) such that the sum of the material-filled areas enclosed above it by the actual profile is equal to the sum of the material void area enclosed below it by the profile.

• Peak to valley height, R_t

 It is the distance from the datum profile to the reference profile.

• Mean roughness index, R_a

 It is the arithmetic mean of the absolute value of the highest h_i between the actual and mean profile.

$$R_{a}=1/L$$
 $\int_{-x=0}^{-x=L}|h_{i}|\;dx$, where L is sampling length

Surface Roughness expected from manufacturing processes

SL. No.	Manufacturing Process	0.012 0.025 0.050 0.050 0.080 1.6 3.2 wif up 2.5 12.5 wif up 2.5 200					
1	Sand casting	5 7//////50					
2	Permonent mould casting	0.8 777777763					
3	Die casting	0.8 7/7/2 3.2					
4	High pressure casting	0.32					
5	Hot rolling	2.5 7////////50					
6	Forging	1.5 /////// 28					
7	Extrusion	0.16					
8	Flame cutting Sawing & Chipping	6.3					
9	Radial cut-off sawing	6.3					
10	Hand grinding	6.3 /// 25					
11	Disc grinding	1.6 7/7///2/25					
12	Filing	0.25					
13	Planing	1.6 /////////50					

Surface Roughness expected from manufacturing processes

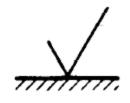
14	Shaping								1.6	Z	///	72	//	25		
15	Drilling								1.6	\overline{z}	72	Z	2 2	0	<u>† </u>	
16	Turning & Milling					0. 3	2	77		77	\mathbb{Z}	\overline{Z}	77	25		
17	Boring						0.4	\mathbf{Z}	72	77	77	6.3				
18	Reaming						0.4	ZZ	Z_{2}	//	3.2					
19	Broaching						0.4	\overline{Z}	//	//	3.2					
20	Hobbing						0.4	Z	72	77	3.2					
21	Surface grinding		a	063	EZ	77	22	ZZ	ZZ	///	2 5		1			
22	Cylindrical grinding		0	.063	Z	22	Z	///	Z	//	Z 5					
23	Honing	0.0	25	Z	Z	72	ZZ	0.4								
24	Lapping	0.012	\overline{Z}	7 2	Z	70	.16									
25	Polishing		0.0	4 E	Z	2).16									
26	Burnishing		0.0	4 2	ZZ	Z	Z	Z	0.8	000 0000						
27	Super finishing	0.016	Z	Z	//	Z	20	.32								

Measurement of roughness

The roughness may be measured, using any of the following:

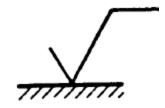
- 1. Straight edge
- 2. Surface gauge
- 3. Optical flat
- 4. Tool marker's microscope
- 5. Profilometer
- 6. Profilograph
- 7. Talysurf

INDICATION OF SURFACE TEXTURE

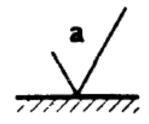

The **basic symbol** consists of two legs of **unequal** length inclined at approximately **60'** to the line representing the considered surface

The symbol must be represented by thin line

If the removal of material by **machining** is required, a bar is added to the basic symbol,

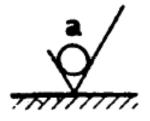

If the removal of material is not permitted, a circle is added to the basic symbol.

When **special surface characteristics** have to be indicated, a line is added to the longer arm of any of the above symbols,

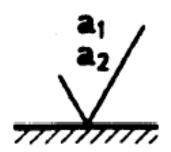


Basic symbol: only be used alone when its meaning is explained by a note

Indication of Surface Roughness

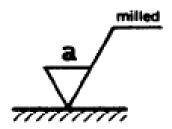

The value or **values** defining the principal criterion of **roughness** are added to the symbols

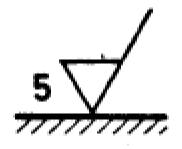
Roughness **a** obtained by any production process



Roughness **a** obtained by removal of material by machining

Roughness **a** shall be obtained without removal of any material


If it is necessary to impose **maximum** and **minimum limits** of the principal criterion of surface roughness, both values shall be shown


a- surface roughness value

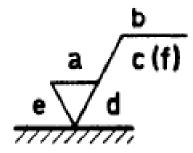
maximum limit (a_1) ; minimum limit (a_2) .

If it is required that the required **surface texture** be produced by one **particular production method**, this method shall be indicated in plain language on an extension of the longer arm of the symbol

Indication of machining allowance where it is necessary to specify the value of the machining allowance, this shall be indicated on the **left of the symbols**. This value shall be expressed in **millimeters**.

Generally to indicate the surface roughness, the symbol is used instead of value. The relation is given in following table.

Roughness Values Ra	Roughness Grade Numbers
μm	
(1)	(2)
50	N 12
25	N 11
12.5	N 10
6.3	N 9
3.2	N 8
1.6	N 7
0.8	N 6
0.4	N 5
0.2	N 4
0.1	N- 3
0.05	N 2
0.025	N 1


Machining Symbols

	<u> </u>	Symbol	
	Remove	al of Material by machini	ing is
	optional	obligatory	prohibited
14.6.2.1	3.2 N8	3.2 N8	3.2 or N8
14.6.2.2	6.3 N9 1.6 N7	6.3 N9 1.6 N7	6.3 N9 1.6 or N7

This symbol may also be used in a drawing, relating to a production process, to indicate that a surface is to be left in the state ,resulting from a preceding manufacturing process, whether this state was achieved by removal of material or otherwise

Position of the Specifications of the Surface Texture in the Symbol - The specifications Of surface texture shall be placed relative to the symbol as shown in figure.

a = Roughness value Ra in micrometres or

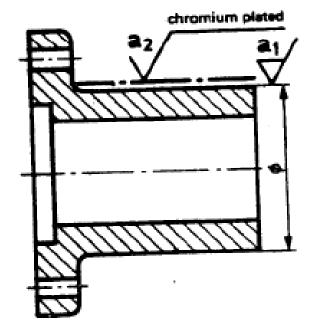
= Roughness grade number N1 to N12.

b = Production method, treatment or coating

c = Sampling length

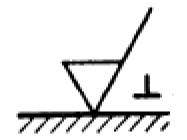
d - Direction of lay

e = Machining allowance

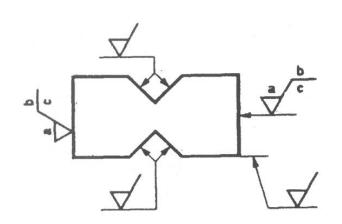

f = Other roughness values (in brackets).

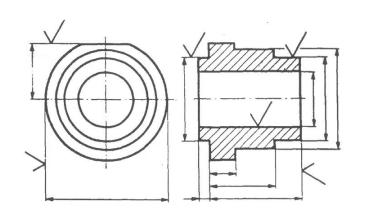
symbol	Interpretation					
=	Parallel to the plane of projection of the view in which the symbol is used	Direction of lay				
1	Perpendicular to the plane of projection of the view in which the symbol is used	Direction of lay				
X	Crossed in two slant direction relative to the plane of projection of the view in which the symbol is used	Direction of lay				
М	Multidirectional					
С	Approximately circular relative to the centre of the surface to which the symbol is applied					
R	Approximately radial relative to the centre of the surface to which the symbol is applied	₩ W				

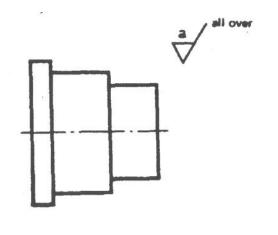
Symbols with Additional Indications.


Symbol	Meaning
milled	Production method: milled.
√2.5	Sampling length: 2.5 mm
4,	Direction of lay: perpendicular to the plane of projection of the view.
2 ♥	Machining allowance: 2 mm
V(R, = 0.4)	Indication (in brackets) of a criterion of roughness other than that used for R_a for example $R_t = 0.4 \mu m$

If it is necessary to define **surface texture both before and after treatment**, this shall
be explained in a suitable note or in
accordance with figure




The **direction of lay** is the direction of the predominant surface pattern, ordinarily determined by the production method employed.


If it is necessary to control the direction of lay, it is specified by a symbol added to the surface texture symbol

Ways to represent roughness

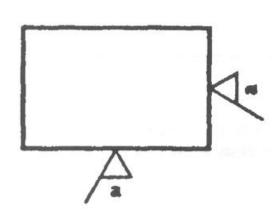
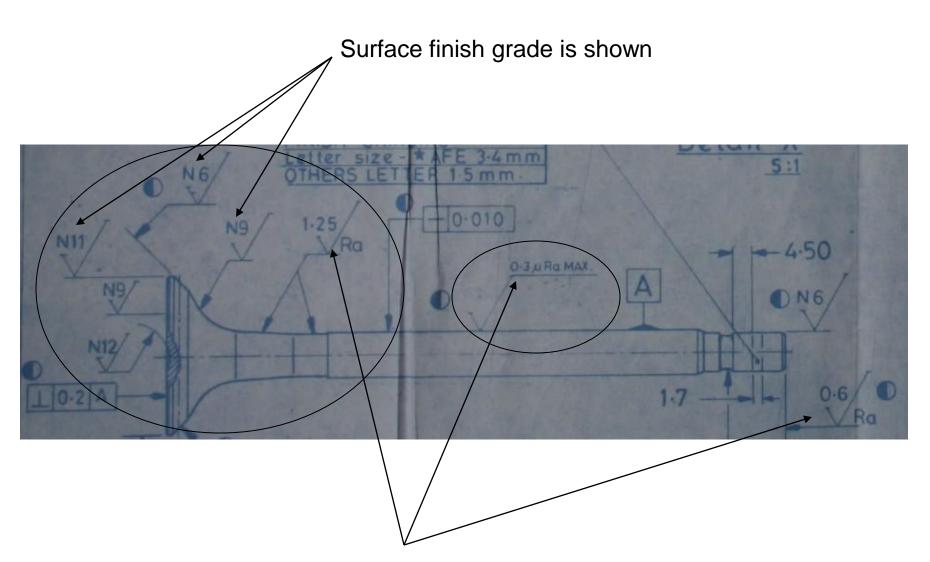
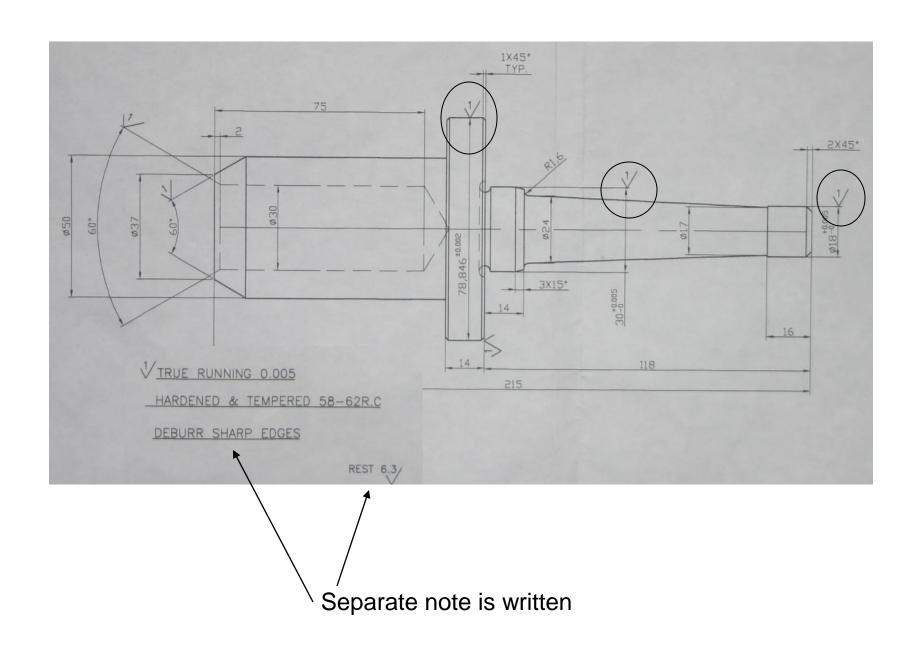
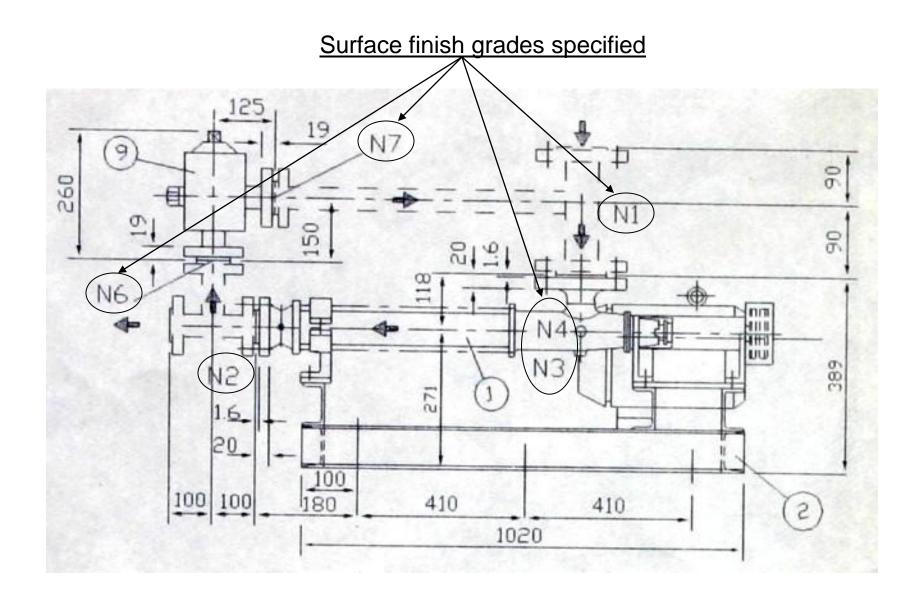





FIG. 14.26

Surface finish value is shown

